Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
ChemSusChem ; : e202400454, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702899

RESUMO

Nitromethane is used a common solvent, stabilizer, and fuel additive. Nitromethane has also been used as a sustainable building block and convenient reagent in chemical synthesis. In this Minireview, we summarize the recent advances in activation of nitromethane, using nitromethane as the source of cyano group, nitrogen, methylamine, formyl group, C1, nitroso, and oxime.

2.
Mater Today Bio ; 26: 101052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38628351

RESUMO

Advanced stages of breast cancer are frequently complicated by bone metastases, which cause significant cancer-related bone destruction and mortality. However, the early precise theranostics of bone metastasis remains a formidable challenge in clinical practice. Herein,a novel all-in-one nanotheranostic system (ABI NYs) combining NIR-II FL/PA dual-modal imaging with photothermal-immunity therapeutic functionalities in one component was designed to precisely localize bone metastasis microscopic lesions and achieve complete tumor ablation at an early stage. The surface modification of the nanosystem with ibandronate (IBN) facilitates both passive and active targeting, significantly improving the detection rate of bone metastasis and suppressing the bone resorption. Superior photothermal performance produces sufficient heat to kill tumor cells while stimulating the upregulation of heat shock proteins 70 (HSP70), which triggers the immunogenic cell death (ICD) effect and the anti-tumor immune response. These all-in-one nanosystems precisely demonstrated early lesion localization in bone metastases and total tumor ablation with a single integration via "one-component, multi-functions" technique. To sum up, ABI NYs, as novel biomineralizing nanosystems integrated with anti-tumor and bone repair, present a synergistic therapy strategy, providing insight into the theranostics of bone metastases and clinical research.

3.
Adv Mater ; : e2402575, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631046

RESUMO

Organic photovoltaic (OPV) technology holds tremendous promise as a sustainable power source for underwater off-grid systems. However, research on underwater OPV cells is relatively scarce. Here, this gap is addressed by focusing on the exploration and development of OPV cells specifically designed for underwater applications. An acceptor, named ITO-4Cl, with excellent water resistance, is rationally designed and synthesized. Benefiting from its low energetic disorder and an absorption spectrum well-suited to the underwater environment, the ITO-4Cl-based OPV cell achieves an unprecedented power conversion efficiency (PCE) of over 25.6% at a water depth of 1 m. Additionally, under 660 nm laser irradiation, the cell demonstrates a notable PCE of 31.6%, indicating its potential for underwater wireless energy transfer. Due to the mitigation of thermal effects from solar irradiation, the lifetime of the ITO-4Cl-based OPV cell exceeds 7000 h. Additionally, a flexible OPV cell is fabricated that maintains its initial PCE even under exposure to high pressures of 5 MPa. A 32.5 cm2 flexible module achieves an excellent PCE of 17%. This work fosters a deeper understanding of underwater OPV cells and highlights the promising prospects of OPV cells for underwater applications.

4.
Biomed Pharmacother ; 174: 116553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593703

RESUMO

This study is to investigate the effect of SPS on the UC model. An animal model of UC induced by DSS was developed using C57BL/6 mice. The body weight was recorded every day, and the symptoms related to UC were detected. H&E staining, AB-PAS staining and PSR staining were used to evaluate the histopathological changes of the colon. Inflammation and mucosal barrier indicators were detected by qRT-PCR, and the 16 S rRNA sequence was used to detect the intestinal flora. SPS can significantly prevent and treat DSS-induced ulcerative colitis in animals. SPS significantly improved clinical symptoms, alleviated pathological damage, inhibited the infiltration of intestinal inflammatory cells. SPS treatment can protect goblet cells, enhance the expression of tight junction proteins and mucins, inhibit the expression of antimicrobial peptides, thereby improving intestinal barrier integrity. The prevention and treatment mechanism of SPS may be related to the inhibition of STAT3/NF-κB signaling pathway to regulate intestinal barrier function. In particular, SPS also significantly adjusted the structure of intestinal flora, significantly increasing the abundance of Akkermansia and Limosilactobacillus and inhibiting the abundance of Bacteroides. Overall, SPS has a significant therapeutic effect on ulcerative colitis mice, and is expected to play its value effectively in clinical treatment.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Mucosa Intestinal , Camundongos Endogâmicos C57BL , NF-kappa B , Polissacarídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Camundongos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Sulfato de Dextrana , Modelos Animais de Doenças , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Função da Barreira Intestinal
5.
Nucleic Acids Res ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572755

RESUMO

ADMETlab 3.0 is the second updated version of the web server that provides a comprehensive and efficient platform for evaluating ADMET-related parameters as well as physicochemical properties and medicinal chemistry characteristics involved in the drug discovery process. This new release addresses the limitations of the previous version and offers broader coverage, improved performance, API functionality, and decision support. For supporting data and endpoints, this version includes 119 features, an increase of 31 compared to the previous version. The updated number of entries is 1.5 times larger than the previous version with over 400 000 entries. ADMETlab 3.0 incorporates a multi-task DMPNN architecture coupled with molecular descriptors, a method that not only guaranteed calculation speed for each endpoint simultaneously, but also achieved a superior performance in terms of accuracy and robustness. In addition, an API has been introduced to meet the growing demand for programmatic access to large amounts of data in ADMETlab 3.0. Moreover, this version includes uncertainty estimates in the prediction results, aiding in the confident selection of candidate compounds for further studies and experiments. ADMETlab 3.0 is publicly for access without the need for registration at: https://admetlab3.scbdd.com.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38682240

RESUMO

Negative pressure wound therapy (NPWT) is extensively employed in clinical settings to enhance the healing of wounds. Despite its widespread use, the molecular mechanisms driving the efficacy of NPWT have not been fully elucidated. In this study, skin wound-healing models were established, with administration of NPWT. Vimentin, collagen I, and MMP9 of skin tissues were detected by immunofluorescence (IF). Gene expression analysis of skin wound tissues was performed by RNA-sequencing (RNA-seq). Protein expression was assayed by a western blotting or IF assay, and mRNA levels were quantified by quantitative PCR. Chromatin accessibility profiles of fibroblasts following NPWT or IL-17 exposure were analyzed by ATAC-seq. In rat wound-healing models, NPWT promoted wound repair by promoting re-epithelialization, extracellular matrix (ECM) synthesis and proliferation, which mainly occurred in the early stage of wound healing. These differentially expressed genes (DEGs) in NPWT wounds versus control wounds were enriched in the IL-17 signaling pathway. IL-17 was identified as an up-regulated factor following NPWT in skin wounds. Moreover, the IL-17 inhibitor secukinumab (SEC) could abolish the promoting effect of NPWT on wound healing. Importantly, chromatin accessibility profiles were altered following NPWT and IL-17 stimulation in skin fibroblasts. Our findings suggest that NPWT upregulates IL-17 to promote wound healing by altering chromatin accessibility, which is a novel mechanism for NPWT's efficacy in wound healing.

7.
Neural Regen Res ; 19(10): 2119-2131, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488547

RESUMO

Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.

8.
Angew Chem Int Ed Engl ; : e202403753, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523070

RESUMO

To meet the industrial requirements of organic photovoltaic (OPV) cells, it is imperative to accelerate the development of cost-effective materials. Thiophene-benzene-thiophene central unit-based acceptors possess the advantage of low synthetic cost, while their power conversion efficiency (PCE) is relatively low. Here, by incorporating a para-substituted benzene unit and 1st-position branched alkoxy chains with large steric hindrance, a completely non-fused non-fullerene acceptor, TBT-26, was designed and synthesized. The narrow band gap of 1.38 eV ensures the effective utilization of sunlight. The favorable phase separation morphology of TBT-26-based blend film facilitates the efficient exciton dissociation and charge transport in corresponding OPV cell. Therefore, the TBT-26-based small-area cell achieves an impressive PCE of 17.0 %, which is the highest value of completely non-fused OPV cells. Additionally, we successfully demonstrated the scalability of this design by fabricating a 28.8 cm2 module with a high PCE of 14.3 %. Overall, our work provides a practical molecular design strategy for developing high-performance and low-cost acceptors, paving the way for industrial applications of OPV technology.

10.
Angew Chem Int Ed Engl ; 63(17): e202401066, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38450828

RESUMO

In the field of organic photovoltaics (OPVs), significant progress has been made in tailoring molecular structures to enhance the open-circuit voltage and the short-circuit current density. However, there remains a crucial gap in the development of coordinated material design strategies focused on improving the fill factor (FF). Here, we introduce a molecular design strategy that incorporates electrostatic potential fluctuation to design organic photovoltaic materials. By reducing the fluctuation amplitude of IT-4F, we synthesized a new acceptor named ITOC6-4F. When using PBQx-TF as a donor, the ITOC6-4F-based cell shows a markedly low recombination rate constant of 0.66×10-14 cm3 s-1 and demonstrates an outstanding FF of 0.816, both of which are new records for binary OPV cells. Also, we find that a small fluctuation amplitude could decrease the energetic disorder of OPV cells, reducing energy loss. Finally, the ITOC6-4F-based cell creates the highest efficiency of 16.0 % among medium-gap OPV cells. Our work holds a vital implication for guiding the design of high-performance OPV materials.

11.
J Am Chem Soc ; 146(12): 8697-8705, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478698

RESUMO

Organic photovoltaic (OPV) cells have demonstrated remarkable success on the laboratory scale. However, the lack of cathode interlayer materials for large-scale production still limits their practical application. Here, we rationally designed and synthesized a cathode interlayer, named NDI-Ph. Benefiting from their well-modulated work function and self-doping effect, NDI-Ph-based binary OPV cells achieve an excellent power conversion efficiency (PCE) of 19.1%. NDI-Ph can be easily synthesized on a 100 g scale with a low cost of 1.96 $ g-1 using low-cost raw materials and a simple postprocessing method. In addition, the insensitivity to the film thickness of NDI-Ph enables it to maintain a high PCE at various coating speeds and solution concentrations, demonstrating excellent adaptability for high-throughput OPV cell manufacturing. As a result, a module with 21.9 cm2 active area achieves a remarkable PCEactive of 15.8%, underscoring the prospects of NDI-Ph in the large-scale production of OPV cells.

12.
J Chem Inf Model ; 64(8): 3222-3236, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38498003

RESUMO

Liver microsomal stability, a crucial aspect of metabolic stability, significantly impacts practical drug discovery. However, current models for predicting liver microsomal stability are based on limited molecular information from a single species. To address this limitation, we constructed the largest public database of compounds from three common species: human, rat, and mouse. Subsequently, we developed a series of classification models using both traditional descriptor-based and classic graph-based machine learning (ML) algorithms. Remarkably, the best-performing models for the three species achieved Matthews correlation coefficients (MCCs) of 0.616, 0.603, and 0.574, respectively, on the test set. Furthermore, through the construction of consensus models based on these individual models, we have demonstrated their superior predictive performance in comparison with the existing models of the same type. To explore the similarities and differences in the properties of liver microsomal stability among multispecies molecules, we conducted preliminary interpretative explorations using the Shapley additive explanations (SHAP) and atom heatmap approaches for the models and misclassified molecules. Additionally, we further investigated representative structural modifications and substructures that decrease the liver microsomal stability in different species using the matched molecule pair analysis (MMPA) method and substructure extraction techniques. The established prediction models, along with insightful interpretation information regarding liver microsomal stability, will significantly contribute to enhancing the efficiency of exploring practical drugs for development.


Assuntos
Inteligência Artificial , Microssomos Hepáticos , Microssomos Hepáticos/metabolismo , Animais , Camundongos , Ratos , Humanos , Aprendizado de Máquina , Descoberta de Drogas/métodos , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/química
13.
Fitoterapia ; : 105930, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554885

RESUMO

Two new quinoline alkaloids with an α, ß-unsaturated amide side chain, xylarinines A and B (1 and 2), were isolated from the ethyl acetate extracts of Xylaria longipes solid fermentation. The structures of these were primarily determined though NMR and HRESIMS data analysis. The absolute configuration of compound 1 was assigned using experimental and calculated ECD data. The neuroprotective effects of compounds 1 and 2 against glutamate-induced damage in PC12 cells were evaluated in vitro bioassay. The results demonstrated that both compounds significantly improved cell viability, inhibited apoptosis, decreased malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione (GSH) levels, and reduced intracellular reactive oxygen species (ROS) accumulation. These findings suggested that these mechanisms contribute to the neuroprotective effects of the compounds.

14.
Adv Sci (Weinh) ; 11(17): e2310259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424734

RESUMO

Universal protein coatings have recently gained wide interest in medical applications due to their biocompatibility and ease of fabrication. However, the challenge persists in protein activity preservation, significantly complicating the functional design of these coatings. Herein, an active dual-protein surface engineering strategy assisted by a facile stepwise protein-protein interactions assembly (SPPIA) method for catheters to reduce clot formation and infection is proposed. This strategy is realized first by the partial oxidation of bovine serum albumin (BSA) and lysozyme (LZM) for creating stable nucleation platforms via hydrophobic interaction, followed by the assembly of nonoxidized BSA (pI, the isoelectric point, ≈4.7) and LZM (pI ≈11) through electrostatic interaction owing to their opposite charge under neutral conditions. The SPPIA method effectively preserves the conformation and functionality of both BSA and LZM, thus endowing the resultant coating with potent antithrombotic and bactericidal properties. Furthermore, the stable nucleation platform ensures the adhesion and durability of the coating, resisting thrombosis and bacterial proliferation even after 15 days of PBS immersion. Overall, the SPPIA approach not only provides a new strategy for the fabrication of active protein coatings but also shows promise for the surface engineering technology of catheters.


Assuntos
Materiais Revestidos Biocompatíveis , Muramidase , Soroalbumina Bovina , Trombose , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Trombose/metabolismo , Trombose/prevenção & controle , Animais , Materiais Revestidos Biocompatíveis/química , Muramidase/química , Propriedades de Superfície , Humanos , Interações Hidrofóbicas e Hidrofílicas
15.
Heart Lung ; 66: 23-30, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520987

RESUMO

BACKGROUND: The atrial fibrillation better care (ABC) pathway is an effective strategy for the integrated management of atrial fibrillation (AF). Current data on adherence to the ABC pathway among rural patients with AF in China are limited. OBJECTIVES: To investigated adherence to the ABC pathway and its associated factors among rural patients with AF in China. METHODS: In the cross-sectional study, we recruited 870 rural patients with AF from July 2022 to July 2023 in China. AF-related sociodemographic and clinical data was collected. RESULTS: Among the 870 rural patients with AF, 437 (50.23 %) were male, 714 (82.07 %) were ≥65 years old. The level of adherence to ABC pathway was extremely low (5.75 %), and its associated factors included patients ≥75 years (compared with those <65 years, OR=0.165, 95 %CI: 0.065-0.417, P < 0.001), junior middle school and senior middle school education or above (compared with primary school education or below, OR=3.441, 95 %CI: 1.144-10.351, P = 0.028; OR=11.438, 95 %CI: 3.758-34.814, P < 0.001), average monthly household income per capita 1000-3000 RMB and >3000 RMB (compared with <1000 RMB, OR=3.993, 95 %CI: 1.343-11.877, P = 0.013; OR=4.474, 95 %CI: 1.478-13.541, P = 0.008), persistent AF (compared with paroxysmal AF, OR=0.062, 95 %CI: 0.008-0.466, P = 0.007) and multimorbidity (OR=0.356, 95 %CI: 0.163-0.781, P = 0.010). CONCLUSIONS: There is an urgent need to develop targeted interventions and national policies to improve the adherence to the ABC pathway of rural AF patients in China.

16.
Regen Biomater ; 11: rbae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426010

RESUMO

Delayed wound healing caused by excessive reactive oxygen species (ROS) remains a considerable challenge. In recent years, metal oxide nanozymes have gained significant attention in biomedical research. However, a comprehensive investigation of Co3O4-based nanozymes for enhancing wound healing and tissue regeneration is lacking. This study focuses on developing a facile synthesis method to produce high-stability and cost-effective Co3O4 nanoflakes (NFs) with promising catalase (CAT)-like activity to regulate the oxidative microenvironment and accelerate wound healing. The closely arranged Co3O4 nanoparticles (NPs) within the NFs structure result in a significantly larger surface area, thereby amplifying the enzymatic activity compared to commercially available Co3O4 NPs. Under physiological conditions, it was observed that Co3O4 NFs efficiently break down hydrogen peroxide (H2O2) without generating harmful radicals (·OH). Moreover, they exhibit excellent compatibility with various cells involved in wound healing, promoting fibroblast growth and protecting cells from oxidative stress. In a rat model, Co3O4 NFs facilitate both the hemostatic and proliferative phases of wound healing, consequently accelerating the process. Overall, the promising results of Co3O4 NFs highlight their potential in promoting wound healing and tissue regeneration.

17.
J Nat Prod ; 87(4): 743-752, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38359467

RESUMO

Nuclear magnetic resonance (NMR) chemical shift calculations are powerful tools for structure elucidation and have been extensively employed in both natural product and synthetic chemistry. However, density functional theory (DFT) NMR chemical shift calculations are usually time-consuming, while fast data-driven methods often lack reliability, making it challenging to apply them to computationally intensive tasks with a high requirement on quality. Herein, we have constructed a 54-layer-deep graph convolutional network for 13C NMR chemical shift calculations, which achieved high accuracy with low time-cost and performed competitively with DFT NMR chemical shift calculations on structure assignment benchmarks. Our model utilizes a semiempirical method, GFN2-xTB, and is compatible with a broad variety of organic systems, including those composed of hundreds of atoms or elements ranging from H to Rn. We used this model to resolve the controversial J/K ring junction problem of maitotoxin, which is the largest whole molecule assigned by NMR calculations to date. This model has been developed into user-friendly software, providing a useful tool for routine rapid structure validation and assignation as well as a new approach to elucidate the large structures that were previously unsuitable for NMR calculations.


Assuntos
Teoria da Densidade Funcional , Estrutura Molecular , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Oxocinas/química , Software
18.
World Neurosurg ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310949

RESUMO

OBJECTIVE: To explore the predictive value of transcranial Doppler ultrasound (TCD) combined with quantitative electroencephalogram (QEEG) in delayed cerebral ischemia (DCI) caused by aneurysmal subarachnoid hemorrhage (aSAH). METHODS: The participants were 105 patients with aSAH treated from June 2020 to December 2022. Patients were divided into DCI group (n = 34) and non-DCI group (n = 71) according to the presence of DCI 14 days after onset. Further comparison was conducted on the baseline data as well as the parameters of QEEG and TCD within 24 hours after admission. Multivariate logistic analysis was performed to investigate risk factors related to DCI within 14 days of admission in aSAH patients. RESULTS: There were significant differences in the comparison of the proportion of Hunt-Hess grading, relative δ power (RDP), relative α power (RAP), relative α/ß power ratio (ADR), as well as peak systolic velocity (Vs), mean blood flow velocity (MBFV) and pulsatility index (PI) of middle cerebral artery between the two groups (P < 0.05). Furthermore, Logistic regression analysis revealed that ADR (odds ratio 1.668, 95% CI 1.369-4.345) and MBFV of middle cerebral artery (odds ratio 3.279, 95% CI 2.332-6.720) were risk factors for the occurrence of DCI in aSAH patients (P < 0.05). In addition, evaluation of the predictive value revealed that combined use of the 2 indicators showed the highest predictive value (area under the curve 0.959, 95% CI 0.896-0.993). CONCLUSIONS: Patients with aSAH complicated by DCI have relatively higher MBFV of middle cerebral artery and ADR. Combined use of the 2 indicators can provide reference for early prediction of DCI in aSAH patients.

19.
Adv Sci (Weinh) ; 11(17): e2308905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419379

RESUMO

The precise theranostics of rheumatoid arthritis (RA) remains a formidable challenge in clinical practice. Exploring novel applications of contemporary therapeutic approaches like chemo-radiotherapy is promising as a highly effective strategy for RA. Herein, a novel activatable nanoradiosensitizer-40 (denoted as IRnR-40) is developed, based on encapsulating the clinically approved drugs cisplatin (DDP) and indocyanine green (ICG) within a gelatin shell to achieve second near-infrared fluorescence (NIR-II FL) imaging-guided safe-dose synergetic chemo-radiotherapy. The high concentration of matrix metalloproteinase-9 (MMP-9) in the RA microenvironment plays a pivotal role in triggering the responsive degradation of IRnR-40, leading to the rapid release of functional molecules DDP and ICG. The released ICG serves the dual purpose of illuminating the inflamed joints to facilitate accurate target volume delineation for guiding radiotherapy, as well as acting as a real-time reporter for quantifying the release of DDP to monitor efficacy. Meanwhile, the released DDP achieves highly effective synergistic chemotherapy and radiosensitization for RA via the dual reactive oxygen species (ROS)-mediated mitochondrial apoptotic pathway. To sum up, this activatable nanoradiosensitizer IRnR-40 is believed to be the first attempt to achieve efficient NIR-II FL imaging-guided safe-dose chemo-radiotherapy for RA, which provides a new paradigm for precise theranostics of refractory benign diseases.


Assuntos
Artrite Reumatoide , Cisplatino , Verde de Indocianina , Imagem Óptica , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Animais , Verde de Indocianina/administração & dosagem , Camundongos , Imagem Óptica/métodos , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/uso terapêutico , Humanos , Quimiorradioterapia/métodos
20.
Angew Chem Int Ed Engl ; 63(15): e202400565, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38291011

RESUMO

Organic solar cells (OSCs) are still suffering from the low light utilization and unstable under ultraviolet irradiation. To tackle these challenges, we design and synthesize a non-fused acceptor based on 1-(2-butyloctyl)-1H-pyrrole as π-bridge unit, denoted as GS70, which serves as active layer in the front-cell for constructing tandem OSCs with a parallel configuration. Benefiting from the well-complementary absorption spectra with the rear-cell, GS70-based parallel tandem OSCs exhibit an improved photoelectron response over the range between 600-700 nm, yielding a high short-circuit current density of 28.4 mA cm-2. The improvement in light utilization translates to a power conversion efficiency of 19.4 %, the highest value among all parallel tandem OSCs. Notably, owing to the intrinsic stability of GS70, the manufactured parallel tandem OSCs retain 84.9 % of their initial PCE after continuous illumination for 1000 hours. Overall, this work offers novel insight into the molecular design of low-cost and stability non-fused acceptors, emphasizing the importance of adopting a parallel tandem configuration for achieving efficient light harvesting and improved photostability in OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA